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Abstract: Black walnut (Juglans nigra L.) is one of the most economically valuable hardwood species
and a high value tree for edible nut production in the United States. Although consumption of
black walnut has been linked to multiple health-promoting effects (e.g., antioxidant, antimicrobial,
anti-inflammatory), the bioactive compounds have not been systematically characterized. In addition,
the associations between different black walnut cultivars and their health-promoting compounds
have not been well established. In this study, the kernels of twenty-two black walnut cultivars
selected for nut production by the University of Missouri Center for Agroforestry (Columbia, MO,
USA) were evaluated for their antibacterial activities using agar-well diffusion assay. Among the
selected cultivars, four black walnut cultivars (i.e., Mystry, Surprise, D.34, and A.36) exhibited
antibacterial activity against a Gram-positive bacterium (Staphylococcus aureus), whereas other
cultivars showed no effect on the inhibition of this bacterium. The antibacterial compounds
showing the strongest activity were isolated with bioassay-guided purification and identified using
a metabolomics approach. Six antibacterial bioactive compounds responsible for antimicrobial activity
were successfully identified. Glansreginin A, azelaic acid, quercetin, and eriodictyol-7-O-glucoside
are novel antibacterial compounds identified in the kernels of black walnuts. The metabolomics
approach provides a simple and cost-effective tool for bioactive compound identification.

Keywords: black walnut; Juglans nigra; antibacterial; metabolomics approach; compound
identification

1. Introduction

Black walnut (Juglans nigra L.), known as eastern black walnut or America walnut, is economically
valuable tree for hardwood and nut production [1,2], distributed throughout most of the eastern half
of the United States [3]. The value of black walnut growing stock on timberland is estimated to be over
one-half trillion dollars in the eastern United States [4]. This species is the second highest produced
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walnut nut in the United States and Missouri is the leading producer of black walnut [5]. Black walnut
is often preferred in the food industry due to its unique flavor and aroma.

Black walnut has been identified and selected for propagation since late 1800s [6]. Currently, over
700 black walnut cultivars have been recorded and selected for either timber and nut production during
the past century [7,8]. Selection traits for black walnut orchards include several characteristics such
as yield, percent kernel, cultivar traits leafing date, flowering dates, growth habit, disease resistance,
precocity, productivity, and shelling quality [9]. Several black walnut cultivars have been selected for
nut production by the University of Missouri (MU) Center for Agroforestry (Columbia, MO, USA) [10].

Black walnut is an excellent source for phytochemical compounds including phenolic acids,
flavonoids, and catechins [11] and monounsaturated fatty acids [5]. Our previous studies have revealed
that the kernel of black walnuts contain several bioactive compounds such as quinic acid, gallic acid,
p-hydroxybenzoic acid, vanillic acid, syringic acid, quercetin-3-D-glucoside, epicatechin gallate, rutin,
naringin, and ferulic acid [11]. These compounds have been successfully identified from eleven black
walnut cultivars using liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis [11].
In fact, the kernel extraction of black walnuts has been linked to antibacterial properties [12–18].
The stem bark extraction of English walnut (Juglans regia L.) has been reported to exhibit the
antibacterial activity against methicillin-resistant Staphylococcus aureus [19]. However, the antibacterial
activities among the extracts from different black walnut cultivars have never been compared,
and predominant bioactive compounds in black walnut have not been isolated or characterized.

Reverse-phase flash chromatography has been widely utilized to fractionate and separate the
biomolecules [20]. In this technique, the powder resins collated with the sample extraction are loaded
on chromatography column packed resin coated with hydrophobic functional groups, such as C18 or
C18 Bondesil, and connected to a fraction collector. The phytochemical compounds from the plant
extraction are separated based on differences in their physicochemical properties (e.g., hydrophobicity
and affinity). The phytochemical compounds migrate through the column at different rates and then are
automatically collected at different times. The identification of bioactive compounds can be facilitated
via phytochemical screening assays. This technique provides several advantages (e.g., reproducibility)
compared to the traditional normal-phase chromatography technique.

For the current paper, we first evaluated and compared the antibacterial properties among the
extracts from twenty-two black walnut cultivars selected for nut production. We then isolated and
identified bioactive compounds in the kernels of the best cultivar using bioassay-guided purification
followed by a metabolomics analysis.

2. Results

2.1. Antibacterial Activity from Twenty-Two Black Walnut Cultivars

The zones of inhibition caused by kernel extracts from twenty-two black walnut cultivars against
a Gram-positive bacterium (S. aureus) showed significant differences (p < 0.0001, F22,75 = 200.19)
(Figure 1). Four black walnut cultivars (i.e., Mystry, Surprise, D.34, and A.36) exhibited antibacterial
activity against the Gram-positive bacterium whereas other cultivars (i.e., A4.1010, B.15, B.31, Bowser,
C8.04.1003, D16.06.1036, Daniel, Davidson, Emma, Hay, Hare, Jackson, Kwik Krop, Schessler, Sparks,
Sparrow, South Fork, and Thomas) had no inhibitory effects on this bacterium. Mystry had the greatest
zone of inhibition (11.83± 0.75 mm) compared to other cultivars and the zones of inhibition of Surprise,
D.34, and A.36 which were 7.42 ± 0.92 mm, 6.75 ± 0.42 mm, and 6.33 ± 0.52 mm, respectively, were
significantly different.
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Figure 1. Zones of inhibition of crude kernel extracts of twenty-two black walnut cultivars grown in 
Missouri for Staphylococcus aureus. If no inhibition was observed in samples, a value of 4.5 mm, which 
was the diameter of the wells in agar-well diffusion experiments, was assigned. Means within bars 
followed by different letters are significantly different (α = 0.05, ANOVA). Mean ± SEM. 

2.2. Identification of Antibacterial Compounds Derived from the Kernel Extract of Mystry 

2.2.1. Column Chromatography 

The fractionation of kernel extract from Mystry by column chromatography yielded 46 fractions. 
The antibacterial activities of these fractions against the Gram-positive bacterium (S. aureus) were 
significant different (p < 0.001, F47,94 = 37.28) (Figure 2 and Supplementary Figure S1). The fraction 
numbers from 4 to 18 had antibacterial activities against S. aureus while other fractions had no 
inhibitory effects on S. aureus. The zones of inhibition of fraction 5 and 6 (11.17 ± 0.83 mm and 12.17 
± 0.44 mm, respectively) were significantly higher compared to that of other fractions. No significant 
difference was seen between the zones of inhibition of fraction 6 and the crude extract of Mystry 
whereas the zone of inhibition of fraction 5 was lower than that of the extract of Mystry (Figure 2). 

 
Figure 2. Zones of inhibition of 46 Mystry fractions from column chromatography. 20–46: fraction 20 
through fraction 46. If no inhibition was observed in samples, a value of 4.5 mm, which was the 
diameter of the wells in agar-well diffusion experiments, was assigned. Means within bars followed 
by different letters are significantly different (α = 0.05, ANOVA). Mean ± SEM. 

2.2.2. HPLC Analysis 

The further separation of fraction 6 by HPLC resulted in 27 sub-fractions (Figure S2). Only sub-
fraction 14 exhibited the antibacterial activity against S. aureus while other sub-fractions had no effect 
on the inhibition of the Gram-positive bacterium (Figure 3). The zone of inhibition of sub-fraction 14 

Figure 1. Zones of inhibition of crude kernel extracts of twenty-two black walnut cultivars grown in
Missouri for Staphylococcus aureus. If no inhibition was observed in samples, a value of 4.5 mm, which
was the diameter of the wells in agar-well diffusion experiments, was assigned. Means within bars
followed by different letters are significantly different (α = 0.05, ANOVA). Mean ± SEM.

2.2. Identification of Antibacterial Compounds Derived from the Kernel Extract of Mystry

2.2.1. Column Chromatography

The fractionation of kernel extract from Mystry by column chromatography yielded 46 fractions.
The antibacterial activities of these fractions against the Gram-positive bacterium (S. aureus) were
significant different (p < 0.001, F47,94 = 37.28) (Figure 2 and Supplementary Figure S1). The fraction
numbers from 4 to 18 had antibacterial activities against S. aureus while other fractions had no inhibitory
effects on S. aureus. The zones of inhibition of fraction 5 and 6 (11.17 ± 0.83 mm and 12.17 ± 0.44 mm,
respectively) were significantly higher compared to that of other fractions. No significant difference
was seen between the zones of inhibition of fraction 6 and the crude extract of Mystry whereas the
zone of inhibition of fraction 5 was lower than that of the extract of Mystry (Figure 2).
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Figure 2. Zones of inhibition of 46 Mystry fractions from column chromatography. 20–46: fraction
20 through fraction 46. If no inhibition was observed in samples, a value of 4.5 mm, which was the
diameter of the wells in agar-well diffusion experiments, was assigned. Means within bars followed by
different letters are significantly different (α = 0.05, ANOVA). Mean ± SEM.

2.2.2. HPLC Analysis

The further separation of fraction 6 by HPLC resulted in 27 sub-fractions (Figure S2). Only
sub-fraction 14 exhibited the antibacterial activity against S. aureus while other sub-fractions had no
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effect on the inhibition of the Gram-positive bacterium (Figure 3). The zone of inhibition of sub-fraction
14 was significantly higher compared to other sub-fractions, but was lower compared to the crude
extract of kernel from Mystry (p < 0.0001, F28,56 = 466.87).
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respectively. If no inhibition was observed in samples, a value of 4.5 mm, which was the diameter of
the wells in agar-well diffusion experiments, was assigned. Means within bars followed by different
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2.2.3. UHPLC-QTOF-MS/MS Analysis to Identifying the Bioactive Compounds

Fraction 14 from HPLC fractionation that showed inhibition activity was subject to
UHPLC-QTOF-MS/MS analysis in both negative and positive electrospray ionization modes. Six
major peaks resolved bioactive compounds were identified tentatively by searching their MS/MS
spectra with the metabolomics databases (Figures 4 and 5, Table 1).
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Figure 4. UV chromatogram of Mystry HPLC sub-fraction at 280 nm. 1–6: annotated metabolites, 1:
quercetin-3-O-glucoside, 2: a catechin derivative, 3: eriodictyol-7-O-glucoside, 4: quercitrin, 5: azelaic
acid, 6: glansreginin A, and IS: internal standard.
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Table 1. Putative bioactive compounds responsible for antibacterial activity in black walnut (Mystry).

Peak
No.

TR
(min)

[M-H]-
(m/z) Formula Exact

Mass
∆m

(ppm)

MS/MS
Fragments, m/z,

Intensity (%)

Putative
Identification *

1 5.21 463.0888 C21H20O12 464.0954 2.6

301.0308 (25.3),
300.0280 (100),
271.0260 (76.8),
255.0316 (34.3),
146.9262 (23.2),
119.9065 (21.1)

Quercetin-3-O-glucoside

2 5.77 465.1414 C22H18O11 458.0849 3.8

301.0147 (2.7),
300.0280 (3.0),
241.0358 (4.2),

169.0146 (64.2),
125.0253 (100),
107.0132 (17.5)

Agnuside
Catechin-4-ol 3′-methyl ether

3-O-alpha-L-rhamnopyranoside
Catechin 5-O-beta-D-

glucopyranoside-4′-methyl ether
Catechin 7-O-beta-D-

glucopyranoside-3′-methyl ether

3 6.15 449.1102 C21H22O11 450.1162 4.0

299.9964 (12.4),
298.9994 (15.3),
255.0408 (12.4),
200.8817 (11.5),
174.9541 (17.1),
151.0039 (100),
135.0444 (77.5)

Eriodictyol-7-O-glucoside

4 6.26 477.0941 C21H20O11 448.1006 1.3

301.0373 (43.2),
300.0282 (100),
271.0284 (90.3),
255.0264 (24.8),
178.9994 (29.1),
151.0032 (45.4)

Quercitrin

5 6.58 187.0977 C9H14O4 186.0892 3.2

144.9013 (46.2),
125.0979 (100),
123.0804 (62.4),
97.0656 (47.8)

Azelaic acid

6 7.18 592.2043 C28H35NO13 593.2108 2.1

283.1199 (8.5),
241.1080 (8.2),

223.0979 (19.9),
197.1185 (34.5),
181.0875 (30.8),
144.0456 (100),
137.0972 (12.1)

Glansreginin A

* Tentative identification of compounds on the basis of MS/MS mass spectra and UV spectra reported in the
referred databases.

Compound 1 has retention time (rt) and m/z at 5.21 min and 463.0388, respectively. The MS/MS
spectrum displayed fragment ions at m/z 301 [M − H − 162]−, 300 [M − H − 162 − H]−,
271 [M − H − 162 − 30]−, 255 [M − H − 162 − 46]−, 146 [M − H − 162 − 155]−,
and 119 [M − H − 162 − 182]−. Loss of 162 suggested that it is glycosylated compound and fragment
at m/z of 301 is the aglycone ion. The compound is not methylated as no loss of 15 Da was observed.
The MS/MS was matched to quercetin-3-O-glucoside with a score of 834 (out of 1000) in the MassBank
library. Thus, the compound is tentatively identified as quercetin-3-O-glucoside.

Compound 2 has rt and m/z at 5.77 min and 465.1414, respectively. The MS/MS spectrum displayed
fragment ions at m/z of 301 [M − H − 164]−, 300 [M−H− 164−H]−, 241 [M−H− 164− 60]−,
169 [M − H − 164 − 132]−, 125 [M − H − 164 − 176]−, and 107 [M−H− 164− 194]−.
This information matches to agnuside, catechin-4-ol 3′-methyl ether 3-O-alpha-L-rhamnopyranoside, catechin
5-O-beta-D-glucopyranoside-4′-methyl ether, symplocoside (catechin 7-O-beta-D-glucopyranoside-3′-methyl
ether) in Metlin database with the same mass tolerance (3.8 ppm). MS/MS similarity search showed that
major fragments in MS/MS spectrum matched to those of epigallocatechin gallate with the score of 685, but
the molecular weight did not match. Thus, it is possibly one of the catechin derivatives.
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Compound 3 has rt and m/z at 6.15 min and 449.1102, respectively. The MS/MS spectrum displayed
fragment ions at m/z 300 [M − H − 149]−, 299 [M −H − 149 −H.]−, 255 [M −H − 149 − 45]−,
200 [M − H − 149 − 100]−, 175 [M −H − 149 − 125]−, 151 [M −H − 149 − 149]−,
and 135 [M −H − 149 − 165]−. The MS/MS was matched to eriodictyol-7-O-glucoside with
a score of 872 (out of 1000) in the MassBank library. The ion 449.1102 m/z gave 151/135 as fragments,
corresponding to the fragments previously described by Brito et al. [21] as key aglycone fragments. Thus,
the compound is tentatively identified as eriodictyol-7-O-glucoside.

Compound 4 has rt and m/z at 6.26 min and 477.0941, respectively. The MS/MS spectrum displayed
fragment ions at m/z 301 [M − H − 176]−, 300 [M −H − 176 −H.]−, 271 [M −H − 176 − 30]−,
255 [M −H − 176 − 46]−, 179 [M − H − 176 − 122]−, and 151 [M −H − 176 − 150]−. In MS/MS
spectrum, the predominant ions at m/z 301 [M–H–176]− gave the proof of same glucuronyl unit loss
and fragment at m/z of 301 is the aglycone ion. The characteristic product ions at m/z of 271, 255,
179, and 151 indicate the aglycone of quercetin. On the basis of the mass spectral data, compound 4 is
tentatively identified as quercetrin with a score of 823 (out of 1000) in the metabolomics library developed
by Lei et al. [22].

Compound 5 has rt and m/z at 6.58 min and 187.0977, respectively. The MS/MS spectrum
displayed fragment ions at m/z 144 [M−H− 43]−, 125 [M−H− 43− 19]−, 123 [M − H − 43 − 21]−,
and 97 [M − H − 43 − 47]−. The MS/MS product ion spectrum is dominated by m/z of 125, which
corresponds to the combined loss of a molecule water and CO2 (62 Da). Further fragmentation at m/z of
125 leads to ions at m/z of 123 and 97. The MS/MS was matched to azelaic acid in the MassBank library
with a score of 813 (out of 1000). Therefore, compound 5 was tentatively identified as azelaic acid.

Compound 6 has rt and m/z at 7.18 min and 592.2043, respectively. The MS/MS
spectrum displayed fragment ions at m/z of 283 [M − H − 309]−, 241 [M − H − 309 − 42]−,
223 [M − H − 309 − 60]−, 197 [M − H − 309 − 86]−, 181 [M − H − 309 − 102]−,
144 [M − H − 309 − 139]−, and 137 [M − H − 309 − 146]−. The ion 592.2043 m/z gave 241/197
as fragments, corresponding to the fragments previously described by Gómez-Caravaca et al. [23]
to be glansreginins A. Thus, compound 6 is tentatively identified as glansreginin A with score of 1.0
(peaks: 13/21 annotated/matched) via the MetFrag library.
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Figure 5. Head-to-tail spectral comparisons between the experimental MS/MS spectra and the
referenced library MS/MS spectra. (A) Peak 1: Isoquercitrin, (B) peak 2: a catechin derivative; (C) peak
3: eriodictyol-7-O-glucoside, (D) peak 4: quercitrin, (E) peak 5: azelaic acid, (F) peak 6: glansreginin
A. In each comparison, the experimental MS/MS spectra (upper) and the referenced library MS/MS
spectra (lower). Since compound 6 was tentatively identified by MetFrag in silico interpretation of the
MS/MS spectrum, head-to-tail of this spectral comparison did not show.

3. Discussion

We demonstrated that the antibacterial properties of black walnuts against S. aureus were varied
among tested cultivars. The four cultivars including Mystry, Surprise, D.34, and A.36 exhibited
different antibacterial capacity against the Gram-positive bacterium (S. aureus RN6390). Other cultivars
tested showed no effects on this bacterium. Several fractions of the kernel of Mystry from the column
extraction showed the antibacterial activities (Figure 2), indicating the presence of multiple bioactive
compounds and the possibilities of the synergy effects of these compounds that inhibited the bacterial
growth. Vu et al. [11] reported differences in phenolic profiles of 11 different black walnut cultivars
(e.g., Daniel, Davidson, Emma, Hay, Jackson, Kwik Krop, Mystry, Sparks, Sparrow, Schessler, Surprise,
and Tomboy). Differences in the bioactive activity of black walnut cultivars are highly likely due to the
differences in phytochemical profiles of these cultivars. This finding from this study clearly illustrated
the differences in antibacterial properties among the black walnut cultivars, which can be used as
a selection trait for improving the quality of nuts for nut production.

We found six bioactive compounds (i.e., quercetin-3-O-glucoside, a catechin derivative,
eriodictyol-7-O-glucoside, quercetin, azelaic acid, and glansreginin A) responsible for the antibacterial
activity of the kernels of Mystry against the Gram-positive bacterium (S. aureus) via the metabolomics
approach combined with bioassay-guided fractionation strategy (Figure 6). The information on the
biological activities of these compounds is summarized in Table 2. In addition to other bioactive
compounds (i.e., quinic acid, gallic acid, p-hydroxybenzoic acid, vanillic acid, syringic acid, isoquercetin,
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catechin, epicatechin gallate, rutin, naringin, ferulic acid) in the kernels of black walnuts that have
been linked to possess the antibacterial properties [11], our results reveal that glansreginin A, azelaic
acid, quercetin, and eriodictyol-7-O-glucoside are the predominant antibacterial compounds in the
kernels of black walnuts according to their hydrophobicity (retention times). Among the six bioactive
compounds, glansreginin A was the most abundant in the purified bioactive fraction (Figure 4).
However, the analytical standard for glansreginin A is not commercially available [24], making it
difficult for the validation and qualification of this compound. Future research should focus on
validation and characterization of these antibacterial compounds in black walnut cultivars when the
authentic standards or purified reference standards are accessible. The antimicrobial agents identified
black walnut extracts could be used to prevent growth of spoilage and pathogenic microorganisms in
foods. They could also be used as the natural preservatives in the formulation of personal care product.Metabolites 2018, 8, x 9 of 18 
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Table 2. Bioactivities of six bioactive compounds responsible for antibacterial activity in the kernels of
black walnut (Mystry).

No. Compound Bioactivities References

1 Quercetin-3-O-glucoside antimicrobial Wang et al. [25]
antioxidant Chang et al. [26]

anti-inflammatory Li et al. [27]
anti-fungal Yun et al. [28]
antidiabetic Zhang et al. [29]
anti-allergic Rogerio et al. [30]
antitumor Amado et al. [31], Chen et al. [32]
antiviral dos Santos et al. [33]

anti-hypertensive Junior et al. [34]
anti-apoptoti Zhu et al. [35]

diuretic effects Junior et al. [36]

2 Catechin derivatives antimicrobial Veluri et al. [37], Hara-Kudo et al. [38]
antioxidant Seeram et al. [39]

anti-inflammatory Mizushina et al. [40]
antitumor Cao et al. [41]
antiviral Song et al. [42]

3 Eriodictyol-7-O-glucoside antioxidant Jing et al. [43]

4 Quercitrin antimicrobial Wang et al. [25]
antioxidant Wang et al. [25]

anti-inflammatory Yang et al. [44]
anti-allergic Rogerio et al. [30]
antitumor Liu et al. [45]

5 Azelaic acid antimicrobial Charnock et al. [46]
antitumor Pan et al. [47], Breathnach [48]

6 Glansreginin A antioxidant Ito et al. [49], Slatnar et al. [50]
anti-inflammatory Papoutsi et al. [51]

antiatherogenic effect Berryman et al. [52]
antinociceptive effects Raafat [53]

reduction of cholesterol absorption Ren et al. [54]

Quercetin-3-O-glucoside (known as isoquercitin), a flavonoid, is widely present in a variety
of plants (e.g., medicinal herbs, fruits and vegetables) such as black walnut [11], English walnut
(J. regia) [55], and buckwheat (Fagopyrum esculentum) [56]. In vitro, isoquercitin has also been
documented to possess antibacterial activities against several bacteria such as S. aureus, S. epidermidis,
and Propionibacterium acnes in disk diffusion assay [25]. Many reports revealed that isoquercitin
has been linked to versatile biological properties in vitro and in vivo including antioxidant [26],
anti-inflammatory [27], antifungal [28], antidiabetic [29], anti-allergic [30], antitumor [31,32],
antiviral [33], anti-hypertensive [34], anti-apoptotic [35], and diuretic effects [36].

Catechin derivatives (e.g., (+)-catechin, (−)-epicatechin, (−)-epigallocatechin) are found as major
flavonol components in beverages, vegetables, and fruits [39,57]. Catechin, epicatechin, and epicatechin
gallate have also detected previously in the kernels of black walnuts [11]. This phytochemical
group has been associated with a variety of biological functions including antibacterial, antioxidant,
anti-inflammatory, antiviral, and antitumor effects [37,40–42,57].

Eriodictyol-7-O-glucoside is found as a major flavonoid component derived from a Chinese
herb (Dracocephalum rupestre), and from several plants e.g., grapevine (Vitis vinifera) [58], pistachios
(Pistacia vera) [59]. The biological property of eriodictyol-7-O-glucoside has not been well established.
Information on the biological activity of this compound has focused on the neuroprotective
effect against oxidative stress in vitro and in vivo via Nrf2/ARE activation [43]. In contrast to
eriodictyol-7-O-glucoside, eriodictyol has been associated with a variety of biological properties in vitro
and in vivo such as antioxidant [60], antimicrobial [61], anti-inflammatory [62], antineoplastic [63],
and antinociception [64].
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Quercetin, a flavonoid, and is commonly found in vegetables (e.g., onion, garlic). The antibacterial
properties against several bacteria have been also reported for quercetin [25]. Quercetin exhibited
stronger antibacterial effects against three bacteria (S. aureus, S. epidermidis, and P. acnes) compared to
isoquercetin [25]. This compound has also been linked to multiple biological functions in vitro and in vivo,
such as antioxidant [25], anti-inflammatory [44], anti-allergic [30], and antitumor [65] capabilities.

Azelaic acid is a naturally occurring saturated dicarboxylic acid derived from a variety of
grains such as sorghum (Sorghum bicolor) [66], rye (Secale cereal) [67]. This compound has also been
reported to exert a variety of biological activities in vitro and in vivo including antimicrobial [46]
and antitumor [47,48] capabilities. The U.S. Food and Drug Administration (FDA) approved 15% gel
formulation of azelaic acid for the treatment of rosacea in 2002 [68] and this compound is an excellent
antimicrobial agent cosmetic for the treatment of comedonal and inflammatory acnes [69,70]. In vitro,
azelaic acid exhibited the antibacterial effect against S. aureus, S. epidermidis, and P. acnes at pH of 5.6,
but no antibacterial effect was seen at pH of 7.3 [46].

Glansreginin A, a dicarboxylic acid derivative, presented dominantly in the bioactive fraction
might be mainly responsible for the antibacterial activity of the kernels of Mystry. Glansreginin
A has been also found in the kernels of three other nuts including English walnut [23,49,54,55],
pecans (Carya illinoinensis) [71], and hazelnut (Corylus avellana) [50]. Due to the presence of this
compound in the kernels of these nuts, glansreginin A has been linked to multiple biological
activities in vitro and in vivo such as antioxidant [49,50,72], anti-inflammatory [51], antiatherogenic
effect [52], and antinociceptive effect [53], reduction of cholesterol absorption [54]. This is the first time,
glansreginin A is reported to be associated with the antibacterial properties.

In recent years, the advancement in mass spectrometry, computation power, metabolomics
algorithm and mass spectral libraries in metabolomics allows rapid identification of the bioactive
molecules. The metabolomics approach combined with bioassay guided fractionation strategy in this
study is a promising tool for putative identification of new bioactive compounds from natural sources.
The high-resolution data generated from MS/MS offer the mass accuracy and specific fragmentation
fingerprints needed for rapid identification of the antimicrobial molecules. Therefore, it eliminated the
time consuming and labor-intensive large-scale purification procedure that is required in the traditional
structural elucidation techniques. This approach is cost-effective compared to other approaches for
compound identification e.g., nuclear magnetic resonance (NMR), which typically requires at least
1 mg of the purified crystal [73].

Black walnut is an excellent resource not only for nutrition but also medicinal values. Among
twenty-two black walnut cultivars tested, four cultivars exhibited antibacterial activity against the
gram-positive bacterium S. aureus and six antibacterial compounds in the kernels of Mystry were
tentatively identified. With a growing global consumption of organic personal care products and
diet supplements, through identifying the novel uses of the black walnut and its byproducts, this
study will provide the opportunities to turn abundant, low-value, renewable materials from the black
walnut and its byproducts into profitable value-added products for the industry. Future research
should focus on exploring of other health-promoting properties (e.g., antioxidant, anti-inflammatory,
antitumor) and industrial applications of bioactive compounds of black walnuts through utilizing the
same metabolomics strategy.

4. Materials and Methods

4.1. Black Walnut Cultivars

The nuts of twenty-two black walnut cultivars (i.e., Bowser, Daniel, Davidson, Emma, Hay, Hare,
Jackson, Kwik Krop, Mystry, Schessler, Sparks, Sparrow, South Fork, Surprise, Thomas, A4, A.36, B.15,
B.31, C8, D16, and D.34) were collected at the University of Missouri, Horticulture and Agroforestry
Research Center, New Franklin, MO, USA. The black walnuts were hulled mechanically and hang up
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to dry for 15 days in a dry and darkness place at 24 ◦C. The hulled nuts were then stored at −20 ◦C
until analysis.

4.2. Extraction of Bioactive Compounds from the Kernels of Black Walnuts

The hulled nuts were manually cracked, and the kernels were shelled and homogenized using
a coffee grinder (product # CBG100S, Black + Decker, Beachwood, OH, USA) prior to extraction.
The phytochemicals in the kernels of each cultivar (3 g, 20–30 mesh) were extracted with sonication
in 15 mL of methanol (HPLC grade, Fisher Scientific, Pittsburg, PA, USA). The extract was sonicated
for 60 min followed by centrifugation for 10 min at 4000 rpm and the supernatant was collected.
Subsequently, the supernatant was filtered through a 0.2µm Whatman Anotop syringe membrane filter
(Sigma-Aldrich, St. Louis, MO, USA). The aqueous extract was evaporated until dryness under a flow
of nitrogen and the final extract was resuspended with dimethyl sulfoxide (DMSO, Sigma-Aldrich,
St. Louis, MO, USA) at concentration 0.12 g/mL for screening antibacterial activities using an agar-well
diffusion assay.

4.3. Antibacterial Assay

The strain of bacteria used in this study was a Gram-positive bacterium (S. aureus strain RN
6390) [74]. S. aureus and Methicillin-resistant S. aureus (MRSA) are Gram-positive bacteria that are
resistant to several antibiotics in the market. Identifying molecules or scaffolds that could inhibit
the S. aureus and MRSA could help elucidating possible new antibacterial modes of action against
these pathogens. In addition, many skin infections (acne) or gum disease often results from the
infection of the Gram-positive bacteria. From the previous works, many antimicrobial compounds
that inhibited the S. aureus could also use to treat skin infections and gum disease (e.g., totarol).
Therefore, selecting this specific strain in the early stage screening study will help explore the future
commercial application.

The antibacterial activities of black walnut extracts were determined using agar-well diffusion
assay as described by Holder and Boyce [75]. The S. aureus RN6390 was streaked on Luria-Bertani (LB)
agar plates incubated at 37 ◦C for 12 h. For preparation of 1 L of LB agar, 15 g of agar (Fisher Scientific),
10 g of tryptone (Fisher Scientific), 5 g of yeast extract (Fisher Scientific) and 10 g of NaCl (Fisher
Scientific) were suspended in 1 L of distilled water. The mixture was homogenized and autoclaved
at 121 ◦C for 1 h. It was then cooled to approximately 50 ◦C while mixing with a magnetic stirrer.
The liquid LB agar was poured into Petri plates (150 mm diameter) and allowed to solidify at 25 ◦C. For
preparation of an culture of RN6390, the bacteria were cultured in LB broth at 37 ◦C for 16 h and then
diluted into 5 mL LB broth (to an OD600 of 0.02) and incubated in a shaker at 37 ◦C. Once the culture
reached an OD600 of 0.1, it was swab-inoculated onto LB agar plates. For testing antibacterial activities
of the extracts, wells (4.5 mm in diameter) were cut into the surface of the agar using a cork borer.
The extracts (10 µL) were pipetted into the wells and the plates then incubated under aerobic condition
at 37 ◦C for 16 h. A biocompatible solvent (DMSO) was used as negative control. The diameters of
inhibition zones were measured by a ruler, with an accuracy of 0.5 mm. Each inhibition zone was
measured three times and each extract was replicated at least three times in three different plates.

4.4. Identification of Bioactive Compounds Using a Metabolic Approach

The black walnut cultivar that exhibited the strongest antibacterial activities against the
gram-positive bacterium was selected for bioassay-guided purification. The kernel extract of
this cultivar was sequentially fractionated using column chromatography (CC) and then the
bioactive fraction was further fractionated using high-performance liquid chromatography (HPLC).
The agar-well diffusion assay was performed to identify the antibacterial activities of the bioactive
fractions. The HPLC sub-fraction that had the strongest antibacterial activities against the
Gram-positive bacterium was analyzed by high-resolution mass spectrometry and the mass spectra
was analyzed to identify the bioactive compounds responsible for the antibacterial activities.
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4.4.1. Column Chromatography

Kernels (25 g) were collected and the phytochemicals were extracted twice with methanol
(100 mL:100 mL). The extract was homogenized thoroughly using a blender (Hamilton Beach, Inc.,
Glen Allen, VA, USA) and was sonicated for 60 min at temperature ≤ 30 ◦C. The extract was filtered
through filter paper (125 mm in diameter, Whatman, GE Healthcare, Chicago, IL, USA) under SPE
Vacuum Manifold (Visiprep™ SPE Vacuum Manifold, Sigma-Aldrich, Saint Louis, MO, USA) and then
was concentrated by a rotary evaporator (BUCHI Rotary Evaporator R110, Buchi, Flawil, Switzerland)
under a vacuum (Buchi), yielding a greenish yellow gum (4 g). The resultant gum (4 g) was dissolved
in methanol (5 mL), impregnated with 4 g of sorbents Bondesil C18 (40 µm particle size; Agilent
Technologies, Santa Clara, CA, USA) and placed in the hood for 12 h until all the methanol was
evaporated, which yielded powder resins coated with the extract. The C18 resins with the extract were
stored at 4 ◦C in darkness and used within a week.

The compounds were separated and fractionated by a Biotage FlashMaster II flash chromatography
connected with an ISCO Foxy 200 fraction collector. The powder resins collated with the extract (8 g)
were loaded on to the top of chromatography column (3.7 cm in diameter and 13.5 cm long) packed
with 34 g of C18 Bondesil resin. The running time was 300 min at a flow rate of 0.5 mL/min. The mobile
phase consisted of deionized water (A) and methanol (B) and a linear gradient was optimized as follows
25% B (0–40 min), 25–50% B (40–90 min), 50–75% B (90–120 min), 75% B (120–180 min), 75–100% B
(180–240 min) and 100% B (240–300 min), respectively. The elution yielded forty-six fractions collected
automatically by a fraction collector. All fractions were concentrated by nitrogen evaporator and
re-dissolved in DMSO at 10× concentration for antibacterial activities testing using an agar-well
diffusion assay.

4.4.2. HPLC Analysis

The bioactive fraction from column chromatography that exhibited the strongest antibacterial
activities against the Gram-positive bacterium was further fractionated by high-performance liquid
chromatography (HPLC). The bioactive fraction (50 µL) was injected into a HPLC system consisting of
a Shimadzu SCL-10Avp HPLC controller (Shimadzu Co., Columbia, MD, USA), a LC-10ADvp solvent
delivery system, SIL-10ADvp auto-injector, a SPD-10Avp photodiode array detector, and a FRC-1500
HPLC micro fractionation collector (Shimadzu). The elution was performed with a Columbus C8
reverse-phase column (250 mm × 4.6 mm, 5 µm particle size; Phenomenex, Torrance, CA, USA).
The running time was 30 min at a flow rate of 0.5 mL/min and the signals were monitored at both
254 nm and 220 nm. The mobile phase consisted of deionized water (A) and acetonitrile (B). The elution
condition was optimized as follows 10–45% B (0–16 min), 45% B (16–16.2 min), 45–80% B (16.2–17 min),
80–98% B (17–18 min), 98% B (18–19 min), 98–20% B (19–20 min), and 20% B (20–30 min), respectively.
The HPLC sub-fractions were collected automatically into fraction collection vials. The fractions having
the same retention time window were pooled after 50-time injections of the bioactive fraction from
column chromatography. The solvent of each separated fraction was evaporated under the hood and
the samples were dissolved in DMSO at 100× concentration for testing antibacterial activities using an
agar-well diffusion assay.

4.4.3. UHPLC-QTOF-MS/MS Analysis

The HPLC sub-fraction that exhibited the strongest antibacterial activities was concentrated 100X
in 80% methanol containing an internal standard (umbelliferone) and then the sample was analyzed
by UHPLC coupled to a maXis impact quadrupole-time-of-flight mass spectrometer (Bruker Daltonics,
Gmbh, Bremen, Germany). The separation was achieved on a Waters Acquity UHPLC BEH C18
column (2.1 × 100 mm, 1.7 µm particles size) using a linear gradient of 95%: 5% to 30%: 70% eluents A:
B (A: 0.1% formic acid and B: acetonitrile) in 30 min. From 30–40 min, a linear gradient was as follows
70–95% B (30–33 min), 95% B (33–35 min), 95–5% B (35–36 min), and 5% B (37–40 min), respectively.
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The flow rate was 0.56 mL/min and the column temperature was kept at 60 ◦C. Mass spectrometry
was performed in both negative and positive electrospray ionization modes with the nebulization
gas pressure at 43.5 psi, dry gas of 12 L/min, dry temperature of 250 ◦C and a capillary voltage of
4000V. MS/MS mass spectral data was collected automatically using following parameters including
MS full scan from 100 to 1500 m/z, 3 precursors, threshold with 10 counts, active exclusion with three
spectra released after 0.15 min, collision energy depending on mass such as 35 eV at 500 Da, 50 eV
at 1000 Da and 70 eV at 2000 Da. The mass spectra were auto-calibrated using sodium formate after
data acquisition.

The metabolite annotation in significant peaks in UV chromatogram of the MS/MS mass
spectra was identified based on MS/MS fragmentation. The MS/MS fragments were referenced
to the Metabolomics library developed by Lei et al. [20], as well as MetFrag (https://msbi.ipb-
halle.de/MetFragBeta/), MassBank of North America (http://mona.fiehnlab.ucdavis.edu/spectra/),
and METLIN (http://metlin.scripps.edu).

4.4.4. Statistical Analysis

In antibacterial experiments, zones of inhibition of black walnut extracts were analyzed as
a randomized complete block design using PROC MIXED in SAS 9.4 (SAS Institute, Cary, NC, USA).
If no inhibition was observed in the samples, a value of 4.5 mm, which was the diameter of the wells
used in the agar-well diffusion assay, was assigned to these treatments prior to the analysis. The black
walnut extract was the fixed effect and replication was the random variable. Differences between
extracts were determined using Fisher’s LSD.

5. Conclusions

The antibacterial properties of the kernels of black walnuts were successfully characterized. In fact,
twenty-two black walnut cultivars (i.e., Bowser, Daniel, Davidson, Emma, Hay, Hare, Jackson, Kwik
Krop, Mystry, Schessler, Sparks, Sparrow, South Fork, Surprise, Thomas, A4, A.36, B.15, B.31, C8, D16,
and D.34) had shown differences in their antibacterial properties against the Gram-positive bacterium
(S. aureus RN6390) and Mystry exhibited the strongest antibacterial activity. The antibacterial activity
was also seen in Surprise, D.34, and A.36, but no antibacterial effect was seen in the other tested
cultivars. Six possible antibacterial compounds in the kernels of Mystry were tentatively identified
through the metabolomics approach combined with bioassay-guided purification. This approach is
a promising tool for identifying the candidates of bioactive molecules from natural sources.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/8/4/58/s1,
Figure S1: Zone of inhibition of 29 Mystry fractions (out of 46) from column chromatography. 1-29: fraction 1
through fraction 29, Figure S2: Shimadzu UV Chromatogram of HPLC sub-fraction F14 at 220 nm (A) and 254 nm
(B) generated from SPD-10Avp photodiode array detector, Figure S3: Head-to-tail spectral comparisons between
the experimental MS/MS spectra and the referenced library MS/MS spectra. (A) Peak 1: Isoquercitrin, m/z of
463.0888, retention time (rt) at 5.21 min; (B) Peak 2; (C) Peak 3: Eriodictyol-7-O-glucoside, m/z of 449.1102, rt at
6.15 min; (D) Peak 4: Quercitrin, m/z of 477.0941, rt at 6.26 min; (E) Peak 5: Azelaic acid, m/z of 187.0977, rt at
6.58 min; (F) Peak 6: Glansreginin A, m/z of 592.2043, rt at 7.18 min.
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